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We determine an analogy between certain properties of Liapunov functions and 
the uniform convergence of functional series and sequences satisfying the hypo- 
theses of Dini’s theorem. For autonomous systems the well-known theorems on 
asymptotic stability and instability relative to a part of the variables, based on 
the use of a Liapunov function with a sign-constant derivative, are generalized 
in the direction of relaxing the conditions on the set on which the derivative 
of the Liapunov function vanishes, We consider stability with respect to a part 

of the variables in the linear approximation. 

1. We consider a system of differential equations of perturbed motion 

x’ = x (t, x) (X (t, 0) = 0) (1.1) 

in which x = (yl,..., y,,,, Z1 ,..., Zp) is a real n-vector, m > 0, p > 0, n = 
?.Q + p. We assume that 

a) the right-hand sides of system (1.1) are continuous and satisfy the conditions 
for uniqueness of the solution in the region 

t > 0, II Y II G H > 07 0 6 II 2 1) < 00 (1.2) 

b) the solutions of system (1.1) are z.-extendable, i. e. any solution x (t) is 
defined for all t > 0 for which / Y (t) 11 < H. 

Let x = x (t; to, x0) be the solution of system (1.1) determined by the initial con- 
ditions x (to; t,,, x,,) = x0 (here we have adopted the notation in the survey article 

[ll). 
Definition. The motion x = 0 is said to be asymptotically y-stable uniformly 

in x, if it is y-stable and if for each t o > 0 there exists 6 (to) > U such that 

IlY (t; to, Xo)ll~~ 0 as t--too 
llX&~U0) 

(1.3) 

i.e. for any E > 0 we can find T (E, to) > 0, for which 11 Y (t; to, x0) II <E foI.- 
lows from 1) x0 11 < 6 for all t > t,, + T. 

Note. In contrast to the definition adopted in CZ], the number 6 (to) can depend 
on to. 

A general theorem on asymptotic Y-stability is proved in [3]. It turns out that the 
conditions of this theorem guarantee uniformity in x0. 

Theorem 1. If a continuous function I’ (t, x) is such that 

lJ (G x) > a (II Y II) (a (0) = 0) (1.4) 

623 



624 A.S.Ozlr.3neI? 

where u (r) is a continuous function growing monotonically on fo, Ii] , and if for any 

to > 0 there exists 6 (to) > 0 such that from jJxO/I< 6 follows V (t, x (t; tO, x,)) 1 
0 (*) as t -+ 00, then motion x = 0 is asymptotically y-stable uniformly in x0. 

Proof. Motion x = 0 is asymptotically y-stable [3]. Let us show that 

JJ (k x (G to, x0)) XZ 0 as t-w (1.5) 
IIXollGVo) 

By hypothesis,for any E > 0, t,, > 0 and x0 with j/ x0 11 < 6 (to) we can find II’ (E, 

to, XO) > 0, for which v (to + T, s (t, + T; to, x0)) ( E. By virtue of the con- 
tinuity of function V and of the continuous dependence of the solution on the initial 
conditions, there exists a neigbborh~ 0 (x0) of point x0 such that 

I’ (to + T, x (to i- T; to, x,‘)) < E for x,’ E 0 (~0) (1.6) 

In view of the monotonic decrease of function V , from (1.6) follows 

V (t, x (t; to, x0’)) <E for t > to + T (E, to, x0), xo’ E 0(x0) 

The compact region 11 x0 /I f 6 proves to be a covered system of neighborhoods 

{0 (X0)) from which we can separate a finite subcover Oi,... , 0, with corresponding 
numbers T,, . . . , T,. We set T (6, to) = max{T, . . . . T,}. Then V(t, x (t; to, 
xc)) < e for all tat0 + T(E, to), provided 11 x0 11 < 6 (to), which proves (1.5). 
According to (1.4)‘ (1.3) follows from (1.5). The theorem is proved. 

Note, 1) Analogo~ reasoning can be applied [4] to systems with an infinite num- 

ber of degrees of freedom. 
2) Theorem 1 determines an analogy between certain properties of Liapunov 

functions and the uniform convergence of functional series and sequences satisfying the 

hypotheses of Dini’s theorem [S]. 
Corollary 1 [S]. If system (1.1) is w-periodic in t and its right-hand sides satisfy 

a Lipschitz condition in x in a neighborhood of the point x = 0 , and if the hypotheses 

of Theorem 1 are fulfilled, then the motion x = 0 is asymptotically y-stable uniformly 

in {to, x0}. 
Indeed, by Theorem 1 there exists 6 (0) = 6, > 0 such that 

jy(t; 0, xci>jj~~O as I-00 
&%dKs~ 

But then the motion x = 0 is a~mptotically y-stable uniformly in (to, x0} from the 

region to > 0, jj x0/ < h, where h > 0 is such that jj x (0; z, x,)/j & So, if ‘G E 
[O, 01, 11 x0 11 ~1 A. Thus, in Theorem 1 of [S] we can ignore the requirement that func- 
tion v be o-periodic in t . Analogous additions are valid for the theorems in [4, 7). 

C or o 11 a r y 2 [43. If function 1/ (t, x) satisfies inequality (1.4), its derivative 

v’ (t, x) < - W (t, x), where I$’ (t, x) > b (/y/l) (h (r) is a function of the type 
of a (r)) and w’ ,i 0, then the motion x = 0 is asymptotically y-stable uniformly 

in x0. If, moreover, system (1.1) is o-periodic in t, then the asymptotic y-stability is 

uniform in (to, x0}. 
Corollary 3 [7]. If function V (t, x) satisfies inequality (1.4), I” < 0, and 

*) The notation P 1 o means “B tends to zero,decreasing monotonically (in the wide 
sense)“. 
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V’ (T. x) < - rnn (-c) follows for any 11 > 0 from V (‘6, x) > 11, // y 11 < H , more- 
over, if DJ 

s 
m,(t)dT = + 00 

0 

then the motion x = 0 is asymptotically Y -stable uniformly in xa.If, besides, system 

(1.1) is o-periodic in t, then the asymptotic Y-stability is uniform in {to, x0}. 

Proof. If the hypotheses of Corollary 2 (Corollary 3) are fulfilled, then, as was 
shown in [4] (in [‘I]), for any to > 0 there exists 6 (to) > 0 such that from 11 x0 11 < 

6 follows w (t, x (t; to, x0)) J 0 (V (t, x (i; to, XCJ) 4 0) as t--+ O”- 

Therefore, Theorem 1 and Corollary 1 are applicable ; this completes the proof (*) . 

2. Consider the autonomous system 

x’ = x (x) (2.1) 

In [3, 81 criteria were proposed for system (2.1) for asymptotic y-stability and y-insta- 
bility, using functions v (x) with-a sign-constant derivative v’ under certain require- 
ments on the set n/r = {x: V’ (x) = O}. These conditions on set M can be relaxed 
somewhat. 

T he or e m 2 [3, 81. We assume that each solution of system (2. l), starting in some 

neighborhood of point x = 0, is bounded, and let a function V (x) be such that 

v (x) a a (II Y II)7 w 1 e h’l its derivative by virtue of system (2.1) 

V’(x) = 0 for xEM, V’(x) <O for XE nl (2.2) 

We denote M, = {x: V (x) > 0}, M, = M, n ikf. If set M. does not contain 
entire trajectories (**) for t E [O, co), then the motion x = 0 is asymptotically 

y-stable uniformly in {to, x0). 
Proof. By virtue of the y-stability of motion x = 0 , for any E E (0, H) there 

exists 6 (E) > 0 such that from 11 x,, 11 < 6 follows 11 y (t; 0, x0) (1 < E for all 
t > 0. Let us show that from (1 x,, 11 < 6 ensues V (x (t; 0, x,)) !, 0 as t * 00. 

In view of v’ < 0, lim V (x(t; 0, x,)) = V* > 0 as t + 00 exists. If V, > 0, 
then 

V (x (t; 0, x0)) > V, > 0 for t >,O (2.3) 

By virtue of the boundedness of the solution, x (tk; 0, x0) -+ x* for some sequence 
tk -+ 00 ; moreover, by continuity, v (x.) = v,. If we assume that V (x (t; 0, 
x*)) E V* > 0 for t > 0, then V (x (t; 0, x+)) s 0, and, consequently, x (t; 
0, x*) E n/l, 0 M = M,,, which contradicts the hypothesis. Therefore, V (x (T; 
0, x*)j <V, for some T>O . By virtue of the continuous dependence of the solu- 
tion on the initial conditions and of the continuity of function V , for a number T > 0 
there exists N such that for all k > N 

l ) Added at proof-reading. Recently the author became aware of [14], pub- 
lished after the present paper was in ress. 
ditions on function v can be somew !I 

It has turned out that in Corollary 2 the con- 
at relaxed by replacing inequality (1.4) by the 

requirement that function V be bounded from below. In this regard the proof in [4] 
that R’ (t, x (t; jib, X, )) 1 0 as t - DC, is preserved. 

**) In contrast to the theorems in [3, 81, in the given case only a part of the set 
M \ (x = 0) should not contain entire trajectories. 
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v (x CT; 0, x (tk; 0, x0)) < v, (2.4) 

Using the group property of autonomous systems 

x (T; 0, x (t1,; 0, x0)) = x (T -1 tk; 0, x0) 

from (2.4) we obtain V (S (7’ --I- tk; 0, x0)) ( V,, which contradicts inequality 
(2.3). Consequently, V, = 0, whence follows the required result by Theorem 1. 

E x a m p 1 e [4, 61. We consider the autonomous mechanical system 

Taking the total energy H = T + U as the Liapunov function, we obtain 

rII’ = - 2i 

We assume that : 
(2.6) 

1) system (2.5) has the particular solution q = q’ = 0 (the equilibrium posi- 

tion) ; 
2) the potential energy U (ql, . . . . q,) is positive definite relative to (II,..., 4m 

(m < n), while the dissipative function f (ql’ ,..., qn’) is the positive definite quadratic 

form relative to all velocities; 
3) from any mechanical considerations it is known [6] that the coordinates 

qm+lY...,qn are bounded in the perturbed motion; 
4) there are no equilibrium positions in the set LI (q) > 0 . 

Taking (2.6) into account, on the basis of Theorem 2 we conclude that the equilibrium 
position q = q’ = U is asymptotically stable relative to ql,...,qmr 41’ ,..., 4.n’ uniformly 
in {to, qo, q,‘}. In this example the corresponding theorems in [3, 81 are not applicable: 

the set H’ = 0 can contain entire trajectories other than q = q’ = 0, since the equi- 

librium position q = q’ = 0 is, in general, not isolated. 

Theorem 2 ceases to be true if we ignore the requirement of boundedness of the solu- 

tions, which is shown by example of the system 
Y . 

y’=-l+z2’ z =z 

The general solution of this, unbounded in .z, has the form 
t 

dt 

T+ Z”2 erp (at) 1 ’ z = zo exp (t) 

0 

The solution y = z = 0 is not asymptotically y-stable since for zo # 0 , 
co 

s 1 + Z”::xp (ar) < + O3 
II 

However, the function 2 V = y2 satisfies the hypotheses of Theorem 2. Indeed, the set 
Ai’ - {(y, z) : V’ = 0) is the axis y = 0. For y # 0 we have V > 0. Therefore, the 
intersection A4 n {(y, Z) : V > 0} is empty and, consequently, does not contain entire 
trajectories. 

Theorem 3 [8]. We assume that: (1) each solution of system (2. l), starting in 

some neighborhood of point x = 0, is z-bounded ; (2) the function V (x) is such that 

V (0) = 0 d an in any neighborhood of the origin there exist points x for which 
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V (x) < 0; (3) The derivative v’ satisfies condition (2.2). We denote M1 = {x: 
I/’ (x) < O},and M, = M, n M. If M, does not contain entire trajectories for 

t E [O, oo),then motion x = 0 is y-unstable. 

Proof. We assume the contrary and we select x0 from the conditions V (XO) < 0, 

11 y (t; 0, x0) I/ <H for t > 0. Then 

I’ (x (t; 0, x3) < v (%I) <o (2.7) 

and, consequently, I/ x (t; 0, x0) I] > 1 > 0. The set I?+ of o-limit points of the solu- 

tion x (t; 0, x0) is not empty (by virtue of the boundedness of the solutions) and is inva- 

riant [9], where rf c M [lo, 111: by virtue of (2.7), rf c Ml. Thus, r+ c M, = 
M, f-l M. Consequently, set M,, contains a trajectory, which is impossible. The theo- 

rem is proved. 
The ore m 4 [8]. Let conditions (1) - (3) of Theorem 3 be fulfilled, as well as (4) 

V (0, z) > 0 for any z; (5) the set {x: y = 0 } is invariant. We denote M, = {x: 
I’ (x) <O}, M, = M, fl (M \ {x : y = 0)). If M, does not contain entire tra- 
jectories for t E [O, a), then motion x = 0 is y-unstable. 

Proof. We assume the contrary and we select x0 just as in the proof of Theorem 3. 

The set rf is not empty. Let lim x(t . 0, xo) == x* E r+ n, ll.-*a2 
If lim 11 y (t; 0, x,,) [I = 0 as t + 00, then y* = 0 and, by passing to the limit in 

the inequalities fit V (x (t; 0, x0)) < V (x0) < 0 

we obtain 0 < v (0, z*) ( V (x0), which is impossible. Consequently,l/ y (t,; 0, 
~0) 11 > q > 0 for some sequence t, -+ 00, and we can assume that y* # 0. 
According to (5), 11 y (t; 0, x.J I/ j= 0 for all t > 0, whence, by virtue of the invari- 

ance of I? and of the properties r+ c M and I’+ c M, , follows x (t; 0, x*) E 
M, n (M \ {x: y = 0)) for any t > 0, which is impossible. The theorem is proved. 

3. We consider the linear system 

x’ = Lx (3.1) 

where L is a constant matrix. The following theorem is known. 

Theorem A (*). For the solution x = 0 of system (3.1) be asymptotically stable 
in the m variables &.. . . , ym (** ), it is necessary and sufficient that system (3.1) have 

the form 
y’ = Ay, z’ = By + cz (3.2) 

(A, B and C are matrices of appropriate orders), and that the roots of the equation 

det (A - hE) = 0 have negative real parts. 
Consider the perturbed system 

y’ = AY + f (t, y, z), z’=By+Cz+g(t,y, z> (3.3) 

* ) Pfeiffer, K. , La mkthode directede Liapounoff [Liapunov] a 
stabilite partielle. Dissertation, Univ. Catnolique de Louvain, l? 

pliqu#e a l’etude de la 
aculte des Sciences, 1968. 

**) In the sense of the theorem it is assumed here that the solution x = o is not 
assymptotically stable in more than m variables. 
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Theorem 5. If RelLj (A) < 0 and if in region (1.2) 

Ilf(t, Y9 4ll4lYll (3.4) 

where h is a sufficiently small constant, then the motion x = 0 of system (3.3) is ex- 
ponentially asymptotically. y-stable uniformly in {to, ys) in-the-large with respect 

to zo, i.e. 
II Y (C to, x0) < M II y. 11 exp [-- CL (t - to)1 

(M > 0, a > 0 - const, 0 < 11 zo 11 < co) 

Proof. By hypothesis, Re hj (A) < 0, therefore, according to Liapunov’s theorem 

the equation grad V (y) .Ay = - 1 y 1s h as a single-valued solution as a positive- 
definite quadratic form V (Y). Its derivative, by virtue of (3.3), is 

v’ (TV Y, Z) = - 11 Y (I2 -I- grad V (y).f (t, Y, Z) 

For a sufficiently small h we have [lS] 1” & _ gJ7 (p = con& > O), whence fol- 
lows the result required. 

Note. According to (3.4). f (t, 0, z) G 0, therefore, the condition [13] Y (t, 0, 
z) E 0 is fulfilled here. 

Condition (3.4) is easily verified if the space R, is compact. However, it is very hard 

if an unbounded region (1.2) is considered. This inconvenience is removed if the z -boun- 
dedness of the solutiops is known in advance. We recall [7] that the solutions of system 

(3.3) are said to be z-bounded uniformly in {to, x,-,} if for any compacturn K c Rx 
there exists a constant N (K) such that 

l/z (t; t o1 X0) II ,( IV * as t > to (3. 5) 

follows from to > 0, x0 E K . A criterion for such boundedness is given in fl]. 

Theorem 6. If condition (3.5) is fulfilled, where K = {x: 11 x 11 < 6) with a 

sufficiently small 6 > 0, Re hj (A) (0 ,and 

II f (4 Y, Z) < h jl Y 11 as t>o, IlzlldN (3.6) 

(h = const > 0 is sufficiently small), then the motion x = 0 of system (3.3) is 

exponentially asymptotically y-stable_ 

Proof. Having chosen the function v (y) just as in the proof of Theorem 5, for the 

solutions x (t; to, .x0) with II x0 1 < 6 we obtain (P = comt > 0) 

-$ v (y (t; t,, q)) = V’ (h x (6 t,, x0)) G - P II Y (C hl, %W 
for a sufficiently small h , whence follows the required result. 

Condition (3.6) is fulfilled for a wide class of functions, for example, for the polynom- 

ials (the sum is finite) 
fj@, y, z) = 2 a:).,. j& ,,, & . . . $b,Y . . z: 

with i, -f . . . + i, > 2, continuous and bounded coefficients a. 

The author thanks V. V. Rumiantsev for his attention to the work. 
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We consider the problem of the distribution of a specified number of measur- 
ments on a given interval, ensuring the least variance of the estimate of one 

of the parameters linearly related with the function being measured. Assuming 
a normal distribution law for the measurement errors, we derive equations des- 
cribing necessary extremum conditions for the corresponding variance. Using 


